Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Phytomedicine ; 100: 154083, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1895370

ABSTRACT

BACKGROUND: The high incidence of thrombotic events is one of the clinical characteristics of coronavirus disease of 2019 (COVID-19), due to a hyperinflammatory response caused by the virus. Gegen Qinlian Pills (GQP) is a Traditional Chinese Medicine that is included in the Chinese Pharmacopoeia and played an important role in the clinical fight against COVID-19. Although GQP has shown the potential to treat thrombosis, there is no relevant research on its treatment of thrombosis so far. HYPOTHESIS: We hypothesized that GQP may be capable inhibit inflammation-induced thrombosis. STUDY DESIGN: We tested our hypothesis in a carrageenan-induced thrombosis mouse model in vivo and lipopolysaccharide (LPS)-induced human endothelial cells (HUVECs) in vitro. METHODS: We used a carrageenan-induced mouse thrombus model to confirm the inhibitory effect of GQP on inflammation-induced thrombus. In vitro, studies in human umbilical vein endothelial cells (HUVECs) and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of GQP and determine the main components, targets, and pathways of GQP, respectively. RESULTS: Oral administration of 227.5 mg/kg, 445 mg/kg and 910 mg/kg of GQP significantly inhibited thrombi in the lung, liver, and tail and augmented tail blood flow of carrageenan-induced mice with reduced plasma tumor necrosis factor α (TNF-α) and diminished expression of high mobility group box 1 (HMGB1) in lung tissues. GQP ethanol extract (1, 2, or 5 µg/ml) also reduced the adhesion of platelets to LPS stimulated HUVECs. The TNF-α and the expression of HMGB1, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) in LPS stimulated HUVECs were also attenuated. Moreover, we analyzed the components of GQP and inferred the main targets, biological processes, and pathways of GQP in the treatment of inflammation-induced thrombosis through network pharmacology. CONCLUSION: Overall, we demonstrated that GQP could reduce inflammation-induced thrombosis by inhibiting HMGB1/NFκB/NLRP3 signaling and provided an accurate explanation for the multi-target, multi-function mechanism of GQP in the treatment of thromboinflammation, and provides a reference for the clinical usage of GQP.


Subject(s)
Drugs, Chinese Herbal , HMGB1 Protein , Thrombosis , Animals , Carrageenan , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Thrombosis/chemically induced , Thrombosis/drug therapy , Tumor Necrosis Factor-alpha/metabolism
2.
Pharmacol Res ; 176: 106083, 2022 02.
Article in English | MEDLINE | ID: covidwho-1638968

ABSTRACT

The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, shows unique advantages in the control of symptomatic transition from moderate to severe disease states. However, the roles of XFBD to against hyper-inflammatory response and its mechanism remain unclear. Here, we established acute lung injury (ALI) model induced by lipopolysaccharide (LPS), presenting a hyperinflammatory process to explore the pharmacodynamic effect and molecular mechanism of XFBD on ALI. The in vitro experiments demonstrated that XFBD inhibited the secretion of IL-6 and TNF-α and iNOS activity in LPS-stimulated RAW264.7 macrophages. In vivo, we confirmed that XFBD improved pulmonary injury via down-regulating the expression of proinflammatory cytokines such as IL-6, TNF-α and IL1-ß as well as macrophages and neutrophils infiltration in LPS-induced ALI mice. Mechanically, we revealed that XFBD treated LPS-induced acute lung injury through PD-1/IL17A pathway which regulates the infiltration of neutrophils and macrophages. Additionally, one major compound from XFBD, i.e. glycyrrhizic acid, shows a high binding affinity with IL17A. In conclusion, we demonstrated the therapeutic effects of XFBD, which provides the immune foundations of XFBD and fatherly support its clinical applications.


Subject(s)
Acute Lung Injury/drug therapy , Drugs, Chinese Herbal/pharmacology , Interleukin-17/metabolism , Macrophages/drug effects , Neutrophils/drug effects , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Acute Lung Injury/metabolism , Animals , COVID-19/metabolism , Cell Line , China , Cytokines/metabolism , Leukocyte Count/methods , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , RAW 264.7 Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL